
restraint Documentation

Bill Peck, Dan Callaghan, Jeff Bastian

Jul 05, 2023

Contents

1 Features 3
1.1 Installing . 3
1.2 Starting the Daemon . 5
1.3 Processes and Commands . 5
1.4 Jobs . 15
1.5 Tasks . 18
1.6 Task Environment Variables . 20
1.7 Script/Plugin Environment Variables . 21
1.8 Task Results . 22
1.9 Plugins . 23
1.10 Using Restraint . 27
1.11 Release Notes . 30
1.12 Developer Guide . 39
1.13 Guide to removing RHTS from Jobs . 40

2 Additional Information 45

3 Indices and Tables 47

Index 49

i

ii

restraint Documentation

Restraint is designed to execute tasks. These tasks can be tests which report results or simply code that you want to
automate. Which tasks to execute is determined by a job1. The job also describes where to retrieve the tasks from and
what parameters to pass in. These tasks can report multiple PASS, FAIL, WARN results along with an optional score.
Tasks also have the ability to report log files. Each task can have metadata describing dependencies and max run time
for example. Execution and reporting can be further enhanced with plugins.

Restraint can be used with Beaker2 since it talks Beaker’s Harness API3 for reporting results. It can also be used
stand-alone.

1 Job XML.
2 Beaker is open-source software for managing and automating labs of test computers.
3 Alternate Harness API.

Contents 1

http://beaker-project.org/docs/user-guide/job-xml.html
http://beaker-project.org
http://beaker-project.org/docs/alternative-harnesses

restraint Documentation

2 Contents

CHAPTER 1

Features

• Tasks can be retrieved directly from git.

• Does not rely on Anaconda/kickstart to install task dependencies.

• Can be statically linked to make it easier to test the system without changing the system.

• Can be run stand-alone without Beaker.

– Tasks are executed with the same environment (no surprises when run later in Beaker).

– Developing tasks is much quicker since you don’t have to build task RPMs, schedule a system, provision
a system, etc. . .

• Can be easily extended with Plugins.

• Uses Beaker’s job XML.

The following documentation will show you how to use Restraint in both environments.

Contents:

1.1 Installing

1.1.1 Installing from RPM

Pre-built statically linked versions are available for the following OSes:

• RedHatEnterpriseLinux

• Fedora

• CentOS

To get the appropriate repo file for your OS, use one of the commands listed below:

• RedHatEnterpriseLinux

3

restraint Documentation

sudo wget -O /etc/yum.repos.d/beaker-harness.repo https://beaker-project.org/yum/
→˓beaker-harness-RedHatEnterpriseLinux.repo

• Fedora

sudo wget -O /etc/yum.repos.d/beaker-harness.repo https://beaker-project.org/yum/
→˓beaker-harness-Fedora.repo

• CentOS

sudo wget -O /etc/yum.repos.d/beaker-harness.repo https://beaker-project.org/yum/
→˓beaker-harness-CentOS.repo

Once you have the appropriate repo file on your system you can install Restraint via dnf (or yum on older systems).
Although you can install both the server and the client on the same machine it is not recommended.

Install the Restraint client on your machine if you want to run stand-alone jobs (i.e.: outside of Beaker):

sudo dnf install restraint-client

Install the Restraint server on the systems that will run the tasks/tests:

sudo dnf install restraint

1.1.2 Building from Source

Source code is located at https://github.com/beaker-project/restraint/. Restraint can be built and linked dynamically
or statically. To build it dynamically you will need the development libraries for the following packages installed
(minimum versions are listed):

• zlib-1.2.13

• bzip2-1.0.8

• libffi-3.3

• glib2-2.68.0

• libxml2-2.9.10

• libarchive-3.4.0

• xz-5.2.4

• libsoup-2.52.2

• intltool-0.51.0

• selinux-2.7

• curl-7.68.0

• json-c-0.13.1

• openssl-1.1.1k

Commands that will make sure most of the development libraries required are installed:

sudo dnf install zlib-devel bzip2-devel libffi-devel glib2-devel libxml2-devel
sudo dnf install libarchive-devel xz-devel libsoup-devel selinux-devel json-c-devel
sudo dnf install intltool openssl-devel libcurl-devel

4 Chapter 1. Features

https://github.com/beaker-project/restraint/

restraint Documentation

Once you have all the development libraries installed, you can clone Restraint from git:

% git clone git@github.com:beaker-project/restraint.git
% cd restraint

Build Restraint:

% make

To build it statically first enter the third-party directory and build the support libraries:

% pushd third-party
% make
% popd

Then build Restraint with the following command:

% pushd src
% PKG_CONFIG_PATH=../third-party/tree/lib/pkgconfig make STATIC=1
% popd

Installing Restraint:

% make install

1.2 Starting the Daemon

Regardless if you installed from RPM or from source you start the daemon one of two ways. If the system uses
systemd use the following commands:

Enable the service for next reboot
systemctl enable restraintd.service
Start the service now
systemctl start restraintd.service

For SysV init based systems use the following commands:

Enable the service for next reboot
chkconfig --level 345 restraintd on
Start the service now
service restraintd start

When Restraint runs as a system service it listens on the port 8081.

1.3 Processes and Commands

There are two main restraint processes. The first is the restraint server named restraintd which processes tasks. The
second process supports restraint standalone. This process is the restraint client named restraint which starts restraintd,
provides the job.xml information to the server, and collects logs and results from the server.

1.2. Starting the Daemon 5

restraint Documentation

1.3.1 restraintd

restraintd is the daemon which executes the tasks.

Both a SysV init script and a systemd unit file are provided. The included spec file will use the correct one when built
on RHEL/Fedora based systems.

Logging messages from restraintd are printed to stderr and all output from command execution is printed to stdout.

stderr is redirected to /dev/console to help debug when things go wrong. The SysV init script redirects both stdout and
stderr to /var/log/restraintd.log. For systemd, use the following journalctl command to view restraint logs:

journalctl --unit restraintd

-- Logs begin at Thu 2020-03-12 11:45:05 EDT, end at Thu 2020-03-12 12:10:47 EDT. --
Mar 12 11:45:26 virt-test systemd[1]: Starting The restraint harness....
Mar 12 11:45:26 virt-test systemd[1]: Started The restraint harness..
Mar 12 11:45:26 virt-test restraintd[1135]: recipe: * Fetching recipe: http://lc.
→˓example.net:8000//recipes/30220/
Mar 12 11:45:26 virt-test restraintd[1135]: Listening on http://localhost:8081
Mar 12 11:45:26 virt-test restraintd[1135]: recipe: * Parsing recipe
Mar 12 11:45:26 virt-test restraintd[1135]: recipe: * Running recipe
Mar 12 11:45:26 virt-test restraintd[1135]: ** Fetching task: 183853 [/mnt/tests/
→˓distribution/check-install]
Mar 12 11:45:26 virt-test restraintd[1135]: use_pty:FALSE rstrnt-package reinstall
→˓beaker-core-tasks-distribution-check-install
Mar 12 11:45:32 virt-test yum[1194]: Installed: beaker-core-tasks-distribution-check-
→˓install-1.0-2.noarch
Mar 12 11:45:33 virt-test restraintd[1135]: ** Preparing metadata
Mar 12 11:45:33 virt-test restraintd[1135]: ** Refreshing peer role hostnames:
→˓Retries 0
Mar 12 11:45:33 virt-test restraintd[1135]: ** Updating env vars
Mar 12 11:45:33 virt-test restraintd[1135]: ** Updating external watchdog: 2400
→˓seconds
Mar 12 11:45:33 virt-test restraintd[1135]: ** Installing dependencies
Mar 12 11:45:33 virt-test restraintd[1135]: ** Running task: 183853 [/distribution/
→˓check-install]
...
Mar 12 11:45:43 virt-test restraintd[1135]: ** Completed Task : 183853

When restraintd runs as a system service by SysV init or systemd, it listens on the port 8081.

restraintd can also be paired with the restraint client at which case it does not run as a service. More details on
Standalone can be found at restraint. In this case, any restraintd stdout/stderr output is directed to the restraint client
output.

The scripts and programs associated with the restraintd server can be run within the context of a job as well outside a
job execution.

Command Usage

Restraint commands are communicated to the running restraintd service by providing a URL that restraintd is listening
to. When the command is run within a job, the needed information is available by way of environment variables set
by restraintd for each task. When the command is executed outside a job, you can provide the information by one
of three options. One option relies on setting of environment variables. Second is the server option which requires
you gather restraint server port, recipe number, and task number for constructing the command URL. Lastly is a local
option which relies on an environment file created by restraintd.

Environment Variables Option

6 Chapter 1. Features

restraint Documentation

Most often, many of restraint commands are executed in tasks included in your ‘job.xml’. As a result, commands look
for specific environment variables to be set by restraintd. The variables are as follows with data such as port, recipe,
and task id which is unique for each job:

HARNESS_PREFIX=RSTRNT_
RSTRNT_URL=http://localhost:<port>
RSTRNT_RECIPE_URL=http://localhost:<port>/recipes/<recipe_id>
RSTRNT_TASKID=<task_id>

Note: <port> is a numeric value representing the port used to communicate with restraintd. <recipe_id> and
<task_id> are the numeric values assigned to your running jobs recipe and task.

To utilize the environment variables option when executing a command outside your job, the command software will
default to look for environment variables when other Server and Local options are not set. These environment variables
must be set by the user before executing the command.

Server Option

The server option of calling these commands without exporting environment variables is to provide the argument:

-s, --server <server-url>

The format of the <server-url> is one of the following depending on the command:

for rstrnt-abort
http://localhost:<port>/recipes/<recipe_id>/status/

for rstrnt-adjust-watchdog
http://localhost:<port>/recipes/<recipe_id>/watchdog/

for rstrnt-report-results
http://localhost:<port>/recipes/<recipe_id>/tasks/<task_id>/results/

for rstrnt-report-log. The string /logs/$file is appended by the command for you.
http://localhost:<port>/recipes/<recipe_id>/tasks/<task_id>

Local Option

A simpler option is to run the command locally on the host running restraintd by specifying the following argument:

--port <server-port-number>

This option can be used on the same host running restraintd since the information is derived from the local file
/var/lib/restraint/rstrnt-commands-env-<$port>.sh (where $port is the port number restraintd listens on). As the server
progresses through a job, it defines this file based on the current task. As a result, the user does not need to gather
recipe number and task number and construct a URL for a command as this will be generated for you. The port number
must be provided by the user. For restraintd service, the default port of 8081 can be used. When running with restraint
client, the port number can be found in restraint client log output since restraintd output is redirected to the client.
Log locations for service and non-service restraintd can be found in the section restraintd. The following log entry is
the one which contains the port number of interest:

Listening on http://localhost:<port-number>

This –port option has similar effect to doing the following prior to executing the command:

export $(cat /var/lib/restraint/rstrnt-commands-env-$port.sh)

In conclusion, one of three methods must be used to execute your command. The following are examples of each
method using the command rstrnt-abort as an example:

1.3. Processes and Commands 7

restraint Documentation

rstrnt-abort #
→˓Environment Variables method
rstrnt-abort -s http://localhost:<port>/recipes/<rid>/tasks/<tid>/status/ # Legacy
→˓Method
rstrnt-abort --port <port> # Local
→˓Method

Note:

1. Replace <port>, <rid>, <tid> with your restraint port number, recipe id, task id.

2. Given these fields change as the job progresses and if you are running the command outside the job, the window
of opportunity to target the current running task is reduced when using the –port option.

rstrnt-abort

Running this command sets a recipe to Aborted status. As a result, the current task as well as subsequent tasks in the
recipe will be marked as aborted and the job is discontinued.

Arguments for this command are as follows:

rstrnt-abort [--port <server-port-number>] \
-s, --server <server-url>

]

Where:

--port <server-port-number>
Refer to Command Usage for details.

-s, --server <server-url>
Refer to Command Usage for details.

Where <server-url> is as follows:

http://localhost:<port>/recipes/<recipe_id>/status/

rstrnt-adjust-watchdog

This command allows you to adjust both the external watchdog and the local watchdog.

The arguments for this command is as follows:

rstrnt-adjust-watchdog [--port <server-port-number>] \
-s, --server <server-url>

] <time>

Where:

--port <server-port-number>
Refer to Command Usage for details.

-s, --server <server-url>
Refer to Command Usage for details.

Where server-url is http://localhost:<port>/recipes/<recipe_id>/watchdog/

8 Chapter 1. Features

restraint Documentation

time
This is a required argument. This time can be configured in seconds, minutes, and hours. The value of the field
should be a number followed by either the letter “m” or “h” to express the time in minutes or hours. It can also
be specified in seconds by giving just a number. In most cases, it is recommended to provide a value in at least
minutes rather than seconds.

For example: 90 = 90 seconds, 1m = 1 minute, 2h = 2 hours

The time should be the absolute longest a test is expected to take on the slowest platform supported, plus a 10%
margin of error. Setting the time too short may lead to spurious cancellations, while setting it too long may
waste lab system time if the task does get stuck. Durations of less than one minute are not recommended, as
they usually run some risk of spurious cancellation, and it’s typically reasonable to take a minute to abort the
test after an actual infinite loop or deadlock.

The time provided with the command replaces the current watchdog time as opposed to adding to or removing from
the current watchdog time. Once set, it will take up to HEARTBEAT (1 minute) time for the local watchdog thread
to wake up and see the changes (provided the metadata no_localwatch is false); however, the effective time is as
soon as the command is executed since current time is captured. The external watchdog is increased by EWD_TIME
(30 minutes) from the time you provide while the local watchdog uses the exact time provided.

The following log entries appear in the harness.log file as watchdog’s heartbeat progresses every minute.:

*** Current Time: Fri May 17 15:15:49 2019 Localwatchdog at: Fri May 17 15:15:59 2019

When a user runs this command, you can expect to see the following log entry once the change is first recognized.
Notice it is prefixed with ‘User Adjusted’. Also notice in this example the expire time is less than current time. This
can occur if the command was run with number of seconds less than 1 minute. There is a delay waiting for the
watchdog thread to wake up to handle the changes. The thread can recognize a change occurred at a previous point in
time and will expire the task immediately if the expired time is earlier than now.:

*** Current Time: Fri May 17 15:15:49 2019 User Adjusted Localwatchdog at: Fri May 17
→˓15:15:02 2019

If the command is run with time less than the HEARTBEAT time, the following warning will appear when the command
is executed:

Expect up to a 1 minute delay for watchdog thread to notice change.

If the task metadata has no_localwatchdog set to true, the local watchdog time is not adjusted with this new
time. However, the external watchdog will continue to be adjusted. The log file will show the following warning when
this occurs:

Adjustment to local watchdog ignored since 'no_localwatchdog' metadata is set

rstrnt-backup

Provides the ability to backup a list of files. This command works in concert with rstrnt-restore which restores the
files. In order to preserve permissions and attributes of the files, it is recommended to run this command as root. The
command line for this features is as follows:

rstrnt-backup [list of files to backup]

Other than the list of files to backup, there are no arguments with this command. However, there exists an environment
variable which may be used:

1.3. Processes and Commands 9

restraint Documentation

RSTRNT_BACKUP_DIR - Specify an environment variable which can be set if you want
your files backed up in a directory other than default.
The default is in the subdirectory `/backup`.

rstrnt-package

This command supports installation, removal, and re-installation of packages for various OS package managers. The
restraintd server uses the command to perform package operations for user’s task dependencies. It may be necessary
for user tasks to control these operations as part of their tests.

The arguments for this command are as follows:

rstrnt-package <install | remove | reinstall> <package-name>

The following are environment variables available to control execution of this command:

RSTRNT_PKG_CMD: To specify which package manager command to use.
default: yum

RSTRNT_ARG_ARGS: To provide arguments to package manager command.
default: -y

RSTRNT_PKG_INSTALL: Specify package manager install operation.
default: install

RSTRNT_PKG_REMOVE: Specify package manager remove operation.
default: remove.

RSTRNT_PKG_RETRIES: Number of times to retry package operation.
default: 5

RSTRNT_PKG_DELAY: Number of seconds to delay between retries.
default: 1

rstrnt-prepare-reboot

Prepare the system for rebooting. Similar to rstrnt-reboot, but does not actually trigger the reboot.

If machine is UEFI and has efibootmgr installed, sets BootNext to BootCurrent and uses NEXTBOOT_VALID_TIME
to determine for how long (in seconds) this value is valid. After the specified time, BootNext setting is cleared so
BootOrder takes precedence. Default value for NEXTBOOT_VALID_TIME is 180 seconds. To prevent the clearing
of BootNext, set NEXTBOOT_VALID_TIME to 0 seconds.

Tasks can run this command before triggering a crash or rebooting through some other non-standard means. For
example:

rstrnt-prepare-reboot
echo c >/proc/sysrq-trigger

No arguments are required to run this command.

rstrnt-reboot

Helper to soft reboot the system. On UEFI systems, it will use efibootmgr to set next boot to what is booted currently.
No arguments are required to run this command.

10 Chapter 1. Features

restraint Documentation

rstrnt-report-log

The command rstrnt-report-log loads a log file for a given task. If called multiple times for the same filename for the
same task, it replaces the previously sent file.

The arguments for this command are as follows:

rstrnt-report-log [--port <server-port-number> \
-s, --server <server-url> \

] -l, --filename <logfilename>

Where:

--port <server-port-number>
Refer to Command Usage for details.

-s, --server <server-url>
Refer to Command Usage for details.

Where server-url is http://localhost:<port>/recipes/<recipe_id>/tasks/<task_id> rstrnt-report-log completes
the urls by appending logs/$file to your server-url.

-l, --filename <logfilename>
Specify the name of log file to upload. This is a required argument.

rstrnt-report-result

The command rstrnt-report-result sends a result report and alters the status of the task. This command can be called
multiple times for a single task each concluding with their own status results. At conclusion of the task, the final task
result is the most severe rating. So if you call the command with FAIL, then WARN, then PASS, or SKIP, the task
status results in FAIL.

This program runs in two modes. One provides backward compatibility to legacy harness and libraries and the other is
restraint specific. In the latter case, there are more features. Both modes report a result file, test results, and an optional
score.

Restraint Reporting Mode

For restraint reporting mode (not –rhts), the format of arguments is as follows:

rstrnt-report-result [--port <server-port-number>] \
-s, --server <server-url> \
-o, --outputfile <outfilename> \
-p, --disable-plugin <plugin-name> --no-plugins] \

TESTNAME TESTRESULT [METRIC]
]

Where:

--port <server-port-number>
Refer to Command Usage for details.

-s, --server <server-url>
Refer to Command Usage for details.

Where server-url is http://localhost:<port>/recipes/<recipe_id>/tasks/<task_id>/results/

1.3. Processes and Commands 11

restraint Documentation

-o, --outputfile <outfilename>
Specify the name of file to upload. If not specified, the environment variable $OUTPUTFILE is used if available.

-p, --disable-plugin <plugin-name(s)>
Disables the specified reporting plugins (see Report Result) with the provided name or list of names. For
example, to disable the built-in AVC (Access Vector Cache) checker, this argument would look like:

--disable 10_avc_check

--no-plugins
Disables all reporting plugins

TESTNAME
Testname of the task. This is a required argument.

TESTRESULT
Indicates results of job. It can be one of SKIP|PASS|WARN|FAIL (listed by increasing severity). The highest
severity received for a task becomes the final task result. The only result type that may need further explanation
is SKIP. SKIP is useful when conditions on the device does not apply to this test. The task can be skipped and
marked as such. This allows the user the flexibility to use the same job for multiple hardware types, or OSs, or
architectures, etc and omit tasks when not applicable. This is a required argument.

METRIC
Optional result metric

Legacy Reporting Mode

The rhts extension of restraint uses –rhts. The command line would appear as follows:

rstrnt-report-result --rhts TESTNAME TESTRESULT LOG/OUTPUTFILE [METRIC]

Where:

TESTNAME
Testname of the task. This is a required argument.

TESTRESULT
Indicates results of job. It can be one of SKIP|PASS|WARN|FAIL (listed by increasing severity). The highest
severity received for a task becomes the final task result. The only result type that may need further explanation
is SKIP. SKIP is useful when conditions on the device does not apply to this test. The task can be skipped and
marked as such. This allows the user the flexibility to use the same job for multiple hardware types, or OSs, or
architectures, etc and omit tasks when not applicable. This is a required argument.

LOGFILE
Output name of file. If not specified, the environment variable $OUTPUTFILE is used if available.

METRIC

Optional result metric

The legacy mode depends on environment variables being defined as described in Command Usage. The options -s,
–server and –port are not supported for legacy mode.

Legacy mode looks to see if the environment variable AVC_ERROR is set to +no_avc_check. If this is true, then its
behavior is equivalent to the non-legacy mode --disable 10_avc_check argument.

12 Chapter 1. Features

restraint Documentation

rstrnt-restore

Provides the ability to restore a previously backed up file(s). This command works in concert with rstrnt-backup which
performs the back up step. There is a plugin which is executed at task completion which calls this command for you
(Completed restore plugin).

rstrnt-sync-block

Block the task until the given systems in this recipe set have reached a certain state. Use this command, along with
rstrnt-sync-set to synchronize between systems in a multihost recipe set.

rstrnt-sync-block -s <state> [--timeout <timeout>] [--retry <time>] [--any] <fqdn> [
→˓<fqdn> ...]

For a more detailed guide on multihosting, refer to Beaker Multihost documentation.

-s <state>
Wait for the given state. If this option is repeated, the command will return when any of the states has been
reached. This option is required.

--retry <time>
rstrnt-sync-block sleeps inbetween check for machine(s) states. If you’d like increase or decrease the frequency
of checks, you can alter sleep time using the option retry. The default is 60 seconds.

--timeout <timeout>
Return a non-zero exit status after timeout seconds if the state has not been reached. By default no timeout is
enforced and the command will block until either the given state is reached on all specified systems or the recipe
is aborted by the local or external watchdog.

--any
Return when any of the systems has reached the given state. By default, this command blocks until all systems
have reached the state.

<fqdn> [<fqdn> ...]
FQDN of the systems to wait for. At least one FQDN must be given. Use the role environment variables to
determine which FQDNs to pass.

rstrnt-sync-set

Sets the given state for this system. Other systems in the recipe set can use rstrnt-sync-block to wait for a state to be
set on other systems. The syntax for this command is as follows:

rstrnt-sync-set -s STATE

States are scoped to the current task. That is, states set by the current task will have no effect in subsequent tasks.

On execution of the first set operation, a background process rstrnt-sync is spawned which collects these states and
responds to block requests. This server listens for events received on TCP port 6776. All subsequent set and block
operations are forwarded to the rstrnt-sync server by way of this socket.

This script also writes the states to the file named /var/lib/restraint/rstrnt_events. This file is used when the system
reboots enabling the states to be restored.

1.3.2 restraint

The restraint client is used for standalone execution.

1.3. Processes and Commands 13

https://beaker-project.org/docs/user-guide/multihost.html

restraint Documentation

Use the restraint command to spawn a restraintd process to run a job on a remote test machine. You can run jobs on
the local machine but it is not recommended since some tasks reboot the system. Hosts are tied to recipe IDs inside
the job XML.

Arguments for the client are as follows:

restraint --host <recipe-id>=<host> --job <job.xml> [--restraint-path </dir/
→˓restraintd>] [-v]

Where:

--host <recipe_id>=[<user>@]<host>
Set host for a recipe with specific id. The recipe_id identifies which host correlates to the recipe with the same
recipe id in your job.xml file. This is very useful for multihost testing. If there is no id in the recipe of your
job.xml file, then 1 is the default.

--job </yourdir/your-job.xml>
File Location of your job.xml.

--restraint-path </dir/restraintd>
The optional argument --restraint-path specifies the path to the restraintd binary to run on the remote
machine. This can be used by developers where the restraint repo is pulled and restraintd image is built.
By default, the installed image is executed.

--timeout <minutes>
This optional argument --timeout specifies the time in minutes for ssh to timeout. This option takes affect
when the rsh argument is not used. The default timeout is 5 minutes. A keepalive message is sent every minute
to the server and this is done for the number of minutes provided. If there is no response, the ssh client will
disconnect.

-v
You can pass -v for more verbose output which will show every task reported. If you pass another -v you will
get the output from the tasks written to your screen as well.

-e, --rsh <command>
You can pass -e/--rsh and define command that will be used to connect restraint client to re-
straintd. Default value is ssh -o ServerAliveInterval=60 -o ServerAliveCountMax=5.
Value ServerAliveCountMax is controlled by --timeout option mentioned above.

A sample of restraint command line is as follows:

restraint --host 1=addressOfMyTestSystem.example.com --job /path/to/simple_job.xml --
→˓restraint-path /home/userid/restraint/src/restraintd

By default, the restraintd launched in the remote system will randomly choose a free port to listen on. The option -p,
--port <port> can be used to specify the port where restraintd will listen on.

Restraint will look for the next available directory to store the results in. In the above example, it will see if the
directory simple_job.01 exists. If it does (because of a previous run) it will then look for simple_job.02. It will
continue to increment the number until it finds a directory that doesn’t exist.

By default, Restraint will report the start and stop of each task run like this:

Using ./simple_job.07 for job run

* Fetching recipe: http://localhost:42640

* Parsing recipe

* Running recipe

* T: 1 [/kernel/performance/fs_mark] Running

* T: 1 [/kernel/performance/fs_mark] Completed: PASS

* T: 2 [/kernel/misc/gdb-simple] Running
(continues on next page)

14 Chapter 1. Features

restraint Documentation

(continued from previous page)

* T: 2 [/kernel/misc/gdb-simple] Completed: PASS

* T: 3 [restraint/vmstat] Running

* T: 3 [restraint/vmstat] Completed

All of this information is also stored in the job.xml which in this case is stored in the ./simple_job.07 directory.

job2html.xml

An XSLT (eXtensible Stylesheet Language Transformations) template to convert the stand-alone job.xml results file
into an HTML doc. The template can be found in Restraint’s client directory.

Here is an example command to convert a job run XML file into an HTML doc. This HTML doc can be easily
navigated with a browser to investigate results and logs.

xsltproc job2html.xml simple_job.07/job.xml > simple_job.07/index.html

job2junit.xml

An XSLT template to convert the stand-alone job.xml file into JUnit results. The template can be found in Restraint’s
client directory.

Here is an example command to covert a job run XML into JUnit results.

xsltproc job2junit.xml simple_job.07/job.xml > simple_job.07/junit.xml

1.3.3 Legacy RHTS Commands

Prior to the Restraint harness, users used RHTS commands in their jobs. These are being deprecated and substitutes
for those legacy commands can be found in Replacement for RHTS Scripts.

1.4 Jobs

Restraint parses a sub-set of the Beaker job XML1. Here is an example showing just the elements required for running
in the stand-alone configuration.

<job>
<recipeSet>
<recipe>
<task name="/kernel/performance/fs_mark" keepchanges="yes">
<fetch url="git://fedorapeople.org/home/fedora/bpeck/public_git/tests.git?master

→˓#kernel/performance/fs_mark" />
<params>
<param name="foo" value="bar"/>

</params>
</task>

.

.

.

(continues on next page)

1 Beaker Job XML.

1.4. Jobs 15

http://beaker-project.org/docs/user-guide/job-xml.html

restraint Documentation

(continued from previous page)

<task name="/kernel/foo/checker">
<rpm name="rh-tests-kernel-foo-checker" path="/mnt/tests/kernel/foo/checker"/>

</task>
</recipe>

</recipeSet>
</job>

1.4.1 Naming Tasks

For reporting purposes it is a good idea to name your tasks. For git tasks we have settled on a standard where we use
the sub-directory path from our git repo as the task name. You can see that in the following example.

<task name="/kernel/performance/fs_mark">

This name will be used when reporting on the status of the task and when reporting results.

1.4.2 Task Roles

Restraint supports role assignment for tasks or whole recipes for use in multi-host jobs.

<job>
<recipeSet>
<recipe role="SERVERS">
<task name="/kernel/filesystems/nfs/connectathon-mh">
<fetch url="git://fedorapeople.org/home/fedora/bpeck/public_git/tests.git?master

→˓#kernel/filesystems/nfs/connectathon-mh" />
</task>
</recipe>
<recipe>
<task name="/kernel/filesystems/nfs/connectathon-mh" role="CLIENTS">
<fetch url="git://fedorapeople.org/home/fedora/bpeck/public_git/tests.git?master

→˓#kernel/filesystems/nfs/connectathon-mh" />
</task>
</recipe>

</recipeSet>
</job>

The above example results in environment variables “SERVERS” and “CLIENTS” containing hostnames assigned to
corresponding recipes. The variables will be available only to tasks with the same padding within recipes.

Recipe roles function as default roles for tasks that have no role specified and can be overridden by task roles.

Apart from role env variables Restraint also exports 2 more hostname-related variables:

• RECIPE_MEMBERS - contains hostnames of all hosts within current recipeSet.

• JOB_MEMBERS - contains hostnames of all hosts in current job.

1.4.3 Keeping Your Task Changes Intact

By default Restraint will fetch tasks every time you run a recipe overwriting any changes you’ve done locally. This is
not desirable in some cases, e.g. when debugging a test. Restraint provides the ability to keep local changes by setting
task property “keepchanges” to “yes” in the job xml.

16 Chapter 1. Features

restraint Documentation

<task name="/kernel/performance/fs_mark" keepchanges="yes">

1.4.4 Installing Tasks

The above example shows that you can install tasks directly from git or from an RPM in a yum repo.

Fetch

The first example shows fetching a task from git.

<fetch url="git://fedorapeople.org/home/fedora/bpeck/public_git/tests.git?master
→˓#kernel/performance/fs_mark" />

OR

<fetch ssl_verify="off" url="https://fedorapeople.org/cgit/bpeck/public_git/tests.git/
→˓snapshot/tests-master.tar.gz#kernel/performance/fs_mark" />

The fetch node accepts git URI’s that conform to the following:

• Prefixed with git:// OR use tarballs with http:// and cgit can serve them automatically.

• The fully qualified hostname. Remember that the system running restraintd must be able to reach this host.

• The path to the git repo.

• Optionally you can specify a valid reference which can be a branch, tag or SHA-1. ie: ?master

• Optionally you can specify a sub-dir. Restraint will only extract this sub-dir and run the task from here. ie:
#kernel/performance/fs_mark. Notice that there is not a preceding slash here.

• If you need to disable SSL certificate checking you can set ssl_verify parameter to “off”.

Restraint uses git’s archive protocol to retrieve the contents so make sure your git server has enabled this. You can
enable this on most servers by putting the following in your git repo config

[daemon]
uploadarch=true

RPM

The second example will attempt to install the task via yum/rpm.

<rpm name="rh-tests-kernel-foo-checker" path="/mnt/tests/kernel/foo/checker"/>

Currently Restraint does not attempt to set up any repos that you may have specified in your job.xml. This means
that in order for it to install the above task you must have already configured the task repo on the machine running
restraintd.

The path attribute tells restraint where the task scripts are installed.

1.4.5 Parameters

You can optionally pass parameters to a task via environment variables. The following snippet from our example
would create an environment variable named ‘foo’ with the value ‘bar’.

1.4. Jobs 17

restraint Documentation

<params>
<param name="foo" value="bar"/>

</params>

The parameter KILLTIMEOVERRIDE allows you to specify a different max time than what is specified in the tasks
metadata. KILLTIMEOVERRIDE is provided for compatibility with legacy RHTS (Red Hat Test System).

As of 0.1.40, the parameter RSTRNT_MAX_TIME has been deprecated in favor of KILLTIMEOVERRIDE because
of confusion with RSTRNT_MAXTIME

The parameter RSTRNT_USE_PTY allows you to either enable or disable using a pty for task execution. Use true
to enable and false to disable. Setting this value in the job will override the settings in metadata or testinfo.desc.

1.5 Tasks

Restraint doesn’t require tasks to be written in any particular language. In fact, most tests are written in a mixture of
shell, python and C code. You do need to provide some metadata in order for things to work best.

1.5.1 Restraint Metadata File

Restraint will look for a file called metadata in the task directory. The format for that file is a simple ini file which
most people should be familiar with.

[General]
name=/restraint/env/metadata
owner=User ABC1 <userabc1@example.com>
description=just reports env variables
license=GPLv2
confidential=no
destructive=no

[restraint]
entry_point=./runtest.sh
max_time=5m
dependencies=gcc;emacs
softDependencies=numactl;numactl-devel
environment=META_VAR1=var1value;META_VAR2=var2value;META_VAR3=var3value
repoRequires=general/include;filesystems/include
no_localwatchdog=true
use_pty=false

restraintd does not require any metadata fields to be present. In other words, there are no checks and reporting of
errors if metadata is not present. This allows flexibility in your configuration.

The General section is mostly used for informational data. The only element that Restraint will process is the name
attribute. If defined, this will overwrite the task name specified from the job XML.

The restraint section has the following elements which can be defined:

entry_point

This tells Restraint how it should start running the task. If you don’t specify a program to run it will default to ‘make
run’ which is what legacy RHTS (Red Hat Test System) would do. This would require you provide a Makefile. Other
examples of entry points:

18 Chapter 1. Features

restraint Documentation

* entry_point=autotest-local control-file

* entry_point=STAF local PROCESS START SHELL COMMAND "ps | grep test | wc >testcount.
→˓txt"

max_time

The maximum time a task is expected to run. When restraintd runs a task it sets up a localwatchdog which will kill
the task after this time has expired. When run in Beaker this is also used for the external watchdog (typically 20-30
minutes later than the local watchdog time). Time units can be specified as follows:

* d for days

* h for hours

* m for minutes

* s for seconds

To set a max run time for 2 days you would use the following:

max_time=2d

dependencies

A semicolon-delimited (;) list of additional packages (needed to run this task) to be installed on the system. The task
will abort if the dependencies fail to install.

dependencies=lib-virt;httpd;postgresql;nfs-utils;net-tools;net-snmp;ethereal;
→˓wireshark;tcpdump;rusers;bzip2;gcc

environment

A semicolon-delimited (;) list of task environment variables to be set on the system.

environment=META_VAR1=var1value;META_VAR2=var2value;META_VAR3=var3value

softDependencies

A semicolon-delimited (;) list of optional additional packages to be installed on the system. The task will proceed
even if the soft dependencies fail to install. This is useful for a task that is intended to run on multiple platforms, and
the task can test platform-specific features (e.g., NUMA) if the appropriate support packages are installed, but the task
will not abort on the other platforms where the support packages do not exist.

softDependencies=numactl;numactl-devel

repoRequires

A semicolon-delimited (;) list of additional tasks needed for this task to run.

repoRequires=general/include;filesystems/include

Note: When fetching from git (see Fetch), this is the #subdirectory portion of the URL, so do not use a leading
/ character as was done with RhtsRequires in testinfo.desc for Legacy RHTS tasks.

1.5. Tasks 19

restraint Documentation

no_localwatchdog

Normally Restraint will setup a localwatchdog which will attempt to recover from a hung task before the external
watchdog (if running under Beaker) triggers. But you can tell Restraint to not setup a localwatchdog monitor by
including this key with a value of true. Only true or false are valid values.

no_localwatchdog=true

use_pty

Before version 0.1.24 Restraint would execute all tasks from a pty. This meant that programs thought they were
running in an interactive terminal and might produce ANSI codes for coloring and line positioning. Now the default
is not to use a pty which will give much cleaner output. If you find your test is failing because it expects a pty you can
enable the old behavior by setting this.

use_pty=true

OSMajor Specific Options

Any of the above elements can be overridden with OSMajor specific options. In order for this to work the OSMajor
(or “OS family”) attribute must be filled in the job.xml. If the job was run through Beaker this will have been filled in
for you. If you run a stand-alone job (with restraint-client) you can set the value in the family attribute of the recipe
tag. For example:

<job>
<recipeSet>
<recipe family="RedHatEnterpriseLinuxServer5">

...

For example, if a task is known to take twice as long on RedHatEnterpriseLinuxServer5 then you could use following:

max_time=5m
max_time[RedHatEnterpriseLinuxServer5]=10m

Another example where we will install RHDB on RedHatEnterpriseLinuxServer5 and PostgreSQL on everything else.

dependencies=postgresql
dependencies[RedHatEnterpriseLinuxServer5]=rhdb

1.5.2 Legacy Metadata File

Prior to the Restraint harness, users defined testinfo.desc file as the metadata file in their job tasks and restraint sup-
ported that file. This is being deprecated and the substitute for this file and variables within can be found in Replace-
ment for RHTS testinfo.desc File.

1.6 Task Environment Variables

Restraint exports the following environment variables for task use. They can be altered using the environment variable
of the metadata file or testinfo.desc file (see Tasks).

20 Chapter 1. Features

restraint Documentation

Restraint
Variables

Description Source

HOME home directory defaults to /root. Can be overwritten using recipe or task params. Static
HOSTNAME Set by task plugin before execution of user task Task Plu-

gin
LANG Environment variable to specify locale. The default is en_US.UTF-8. It can be over-

written using recipe or task params.
Static

PATH Program search path environment variable. The default default is
“/usr/local/bin:/usr/bin:/bin: /usr/local/sbin:/usr/sbin:/sbin”. It can be overwrit-
ten using recipe or task params.

Static

RSTRNT_JOBIDPopulated from the job_id attribute of the recipe node. Job
RSTRNT_MAXTIMEMax time in seconds for this task to complete. Input to local and external watchdog

timers.
Job

RSTRNT_OSARCHOS Architectures. Ex: x86_64, s390x, i386, aarch64, ppc64, ppc64le, armhfp Job/Task
Plugin

RSTRNT_OSDISTROName of the distro (Provided if running in Beaker). Job
RSTRNT_OSMAJOROS Major Version of Distro. Ex: Fedora31, CentOS7, RedHatEnterpriseLinux8 Job/Task

Plugin
RSTRNT_OSVARIANTNot all distros use variants. Ex: Server, Client Job
RSTRNT_OWNERPopulated from the owner attribute of the job node. Job
RSTRNT_REBOOTCOUNTThe number of times the system has rebooted for this task. If no reboot occurred, the

values is 0.
Restraint

RSTRNT_RECIPEIDPopulated from the id attribute of the recipe node. Job
RSTRNT_RECIPESETIDPopulated from the recipe_set_id attribute of the recipe node. Job
RSTRNT_TASKIDPopulated from the id attribute of the task node. Job
RSTRNT_TASKNAMEName of task from the job. Ex: “/distribution/command”. metadata
RSTRNT_TASKORDERSequence Order of tasks multiplied by 2. Used by Restraint when it performs multi-

hosting.
Restraint

RSTRNT_TASKPATHWhere the task is installed. rpm
path/
Restraint

TERM Terminal type defaults to vt100. Can be overwritten using recipe or task params. Static
TESTID Contains the ID assigned to this task. Job

For legacy RHTS variables, refer to Legacy RHTS Task Environment Variables.

1.7 Script/Plugin Environment Variables

This table lists environment variables which affect outcome of restraint scripts and plugins. These variables are often
set by the user. They are as follows:

1.7. Script/Plugin Environment Variables 21

restraint Documentation

Restraint Variables Description Source
AVC_ERROR Refer to Legacy Reporting Mode for replacement. User
FAILURESTRINGS FALSES-
TRINGS

Used by report_result plugin to report user’s task. Details can be found
Report Result

User

CLIENTS, SERVERS, DRIVERS Assist in the execution of the scripts rstrnt-sync-block/set. rstrnt-sync-
block

User

NEXTBOOT_VALID_TIME Assist in the execution of the script rstrnt-prepare-reboot. rstrnt-
prepare-reboot

De-
fault/
User

OUTPUTFILE Used by localwatchdog plugin to report user’s task output if set. User
TESTPATH/logs2get File used by localwatchdog plugin to log user’s files listed in logs2get. User
RSTRNT_BACKUP_DIR To specify directory when using using Restraint’s backup/restore

scripts. rstrnt-backup
User

RSTRNT_DISABLED User populated to disable a plugin from running. Do
RSTRNT_DISABLED=”99_reboot” to prevent 99_re-
boot from running after local watchdog expires. Do
RSTRNT_DISABLED=”01_dmesg_check 10_avc_check” to pre-
vent multiple error checking plugins from running (though disabling
these is not advised).

User

RSTRNT_DISABLE_LINGER Used by task_run plugin to disable user lingering. Refer to OS com-
mand loginctl enable/disable linger for details. This was introduced
due to behavior changes from Fedora24+. Default is to enable.

User

RSTRNT_LOGGING Enables debugging for plugins. Default: 3 (1=Debug, 2=Info,
3=Warning, 4=Error, 5=Critical)

User

RSTRNT_NOPLUGINS Set by restraint to disable some plugin functionality when “task_run”
plugins execute. Further details on this variable can be found Plugins.

Re-
straint

RSTRNT_PKG_CMD
RSTRNT_PKG_ARGS
RSTRNT_PKG_INSTALL
RSTRNT_PKG_REMOVE
RSTRNT_PKG_RETRIES
RSTRNT_PKG_DELAY

These variables are used to control the behavior of the command
rstrnt-package. For more details, refer to rstrnt-package command.

De-
fault/
User

RSTRNT_PLUGINS_DIR Specifies the directory to run localwatchdog or report_result plugins. Re-
straint

1.8 Task Results

The final result outcome of a task is influenced by what is set when calling rstrnt-report-result, rstrnt-abort, and the
return code the task exits with.

The user controls the output of the task by calling rstrnt-report-result with test results of SKIP|PASS|WARN|FAIL
(listed by severity). It can be called multiple times in the same task but the final task result wlll be the highest severity
reported so long as the task exits with zero. With these results, the job will go on to the next task.

If the user also rstrnt-abort, this take precedence over the calls to rstrnt-report-results. The final task result will be
abort and the job will not go on to the next task.

There is a deviation in behavior when a non-zero exit code is returned by the task. If the legacy Makefile/testinfo file
is present in the user’s task, the final task result is ABORT regardless of the restraint command calls the user makes.
If the metadata file is present in the user’s task, the final task result is FAIL. If the user still wants the legacy behavior,
they can call the rstrnt-abort command in their task.

22 Chapter 1. Features

restraint Documentation

For more details in regard to the command rstrnt-report-result and rstrnt-abort refer to restraintd command section
restraintd.

1.9 Plugins

Restraint relies on plugins to execute tasks in the correct environment and to check for common errors or simply to
provide additional logs for debugging issues. Here is a typical outline of how plugins are executed:

run_task_plugins
\
10_bash_login
|
15_beakerlib
|
20_unconfined
|
25_environment
|
make run
|\
| report_result
\
report_result

run_task_plugins
\
10_bash_login
|
15_beakerlib
|
20_unconfined
|
25_environment
|
run_plugins <- completed.d
\
98_restore

The report_result commands above cause the following plugins to be executed:

run_task_plugins
\
05_linger
|
10_bash_login
|
15_beakerlib
|
20_unconfined
|
25_environment
|
30_restore_events
|
35_oom_adj
|

(continues on next page)

1.9. Plugins 23

restraint Documentation

(continued from previous page)

run_plugins <- report_result.d
\
01_dmesg_check
|
10_avc_check
|
20_avc_clear
|
30_dmesg_clear

These plugins do not run from the task under test. They run from restraintd process. This allows for greater flexibility
if your task is running as a non-root user since a non-root user would not be able to inspect some logs and wouldn’t be
able to clear dmesg log.

1.9.1 Task Run

Task run plugins are used to modify the environment under which the tasks will execute. Simply place the executable
in /usr/share/restraint/task_run.d. The list of files in this directory will be passed to exec in alphabetical order.

Restraint currently ships with two task run plugins:

• 05_linger - Enables session bus for user that Restraint is running as. You can disable this with
RSTRNT_DISABLE_LINGER=1

• 10_bash_login - invoke a login shell.

• 15_beakerlib - Sets env vars to tell beakerlib how to report results in Restraint.

• 20_unconfined - if selinux is enabled on system run task in unconfined context.

• 25_environment - Will attempt to guess certain variables if they weren’t defined, (OSARCH, OSMAJOR, etc..).

• 30_restore_events - Restores Multi-host states after a reboot.

• 35_oom_adj - sets the oom score low so we are less likely to be killed.

So the above plugins would get called like so:

exec 05_linger 10_bash_login 15_beakerlib 20_unconfined 25_environment 30_restore_
→˓events 35_oom_adj "$@"

In order for this to work the task run plugins are required to exec “$@” at the end of the script. Although task run
plugins can’t take any arguments they can make decisions based on environment variables.

It should be pointed out that the task run plugins are executed for all other plugins! This is to ensure plugins run with
the same environment as your task. When executed under all other plugins the following variable will be defined:

RSTRNT_NOPLUGINS=1

You can do conditionals based on this so lets create a plugin which will start a TCP capture:

Capture tcpdump data from every task
cat << "EOF" > /usr/share/restraint/plugins/task_run.d/30_tcpdump
#!/bin/sh -x

rstrnt_info "*** Running Plugin: $0"

Don't run from PLUGINS

(continues on next page)

24 Chapter 1. Features

restraint Documentation

(continued from previous page)

if [-z "$RSTRNT_NOPLUGINS"]; then
tcpdump -q -i any -q -w $RUNPATH/tcpdump.cap 2>&1 &
echo $! > $RUNPATH/tcpdump.pid

fi

exec "$@"
EOF
chmod a+x /usr/share/restraint/plugins/task_run.d/30_tcpdump

Refer to section (Completed) for how to report these results.

1.9.2 Report Result

Every time a task reports a result to Restraint these plugins will execute.

• 01_dmesg_check - This plugin checks dmesg output for lines containing certain values and also allows lines to
be omitted. If any lines are selected, this indicates an error so the task will conclude with failed results.

• 30_dmesg_clear - This plugin clears dmesg log so the next task will start with a fresh log.

There are 2 variables which manage selection of dmesg output. They are FAILURESTRINGS and FALSESTRINGS.
The FAILURESTRINGS variable contain values which allow you to select those lines considered in error. The FALSES-
TRINGS variable contain values allowing you to omit some lines. This enables you to omit false positives.

There are 3 ways FAILURESTRINGS and FALSESTRINGS configuration are provided. They can be configured by
way of environment variables, as files, or defaults. The order of precedence for these variables/files is follows:

1) Task environment variable
2) User defined files
3) and defaults.

FAILURESTRINGS and FALSESTRINGS are processed separately so you could define FAILURESTRINGS as an envi-
ronment variable while maintaining defaults for FALSESTRINGS.

The default values for FAILURESTRINGS are as follows:

Oops|BUG|NMI appears to be stuck|Badness at

The default values for FALSESTRINGS are as follows:

BIOS BUG|DEBUG|mapping multiple BARs.*IBM System X3250 M4

Both of the above strings can be overridden for each task by passing in your own FAILURESTRINGS or FALSES-
TRINGS environment variables. This is configured for each task. To define environment variables, refer to instructions
for metadata or testinfo.desc files in (see Tasks).

If you want all tasks in a recipe to use the same set of your user-defined FAILURESTRINGS or FALSESTRINGS, you
could start your recipe with a task which creates the following files respectively:

/usr/share/rhts/failurestrings
/usr/share/rhts/falsestrings

When configuring these files, each string should be on a separate line instead of separated with ‘|’. For example,
failurestrings would contain something like the following:

1.9. Plugins 25

restraint Documentation

Oops
BUG
NMI appears to be stuck
Badness at

In some cases, the kernel will produce a multi-line error message (including hardware information and stack trace)
in the dmesg output which is delimited by a “cut here” line at the beginning and an “end trace” line at the end. This
plugin will capture the entire contents of the multi-line trace and considers it as a single failure. The FALSESTRINGS
pattern is applied to the whole trace to check for false positives.

• 10_avc_check - This plugin searches for AVC (Access Vector Cache) errors that have occurred since the last
time a result was reported.

• 20_avc_clear - This moves the time stamp used by avc_check forward so that we don’t see the same AVC’s
reported again, some tests might generate AVC’s on purpose and disable the check but you will still want to
move the time stamp forward.

If you need to skip error checking, refer to RSTRNT_DISABLED as described in the Task Environment Variables
section.

1.9.3 Local Watchdog

These plugins will only be executed if the task runs beyond its expected time limit. Restraint currently ships with three
plugins:

• 10_localwatchdog - uploads the resultoutputfile.log of the running task.

• 20_sysinfo - Collects and uploads system information.

– Uploads system log which contains a collection of system information such as slabinfo, list of blocked
tasks derived from sysrq m, t and w, and pre-existing system log messages. Depending if journalctl
exists, file journalctl or /var/log/messages is uploaded.

– Uploads ps-lwd.log which contains a verbose list of running processes.

– Uploads dmesg log if it contains any output.

– Uploads user logs listed in $TESTPATH/logs2get.

• 99_reboot - Simply reboots the system to try and get the system back to a sane state. If you need to skip this
step, you can use RSTRNT_DISABLED as described in (see Task Environment Variables).

1.9.4 Completed

These plugins will get executed at the end of every task, regardless if the localwatchdog triggered or not. The only
plugin currently shipped with Restraint is:

• 85_sync_multihost_tasks - Synchronizes tasks between client/server jobs on multihost machines. This will
synchronize only if there exists recipes with role=SERVERS as well as role=CLIENTS. For further details on
this feature, refer to Beaker Multihost documentation1.

• 97_audit_rotate - Searches log files in audit directory to find avc messages.

• 98_restore - Restores files backed up by either rhts-backup or rstrnt-backup.

To finish our tcpdump example from above we can add the following:
1 Beaker Multihost documentation.

26 Chapter 1. Features

https://beaker-project.org/docs/user-guide/multihost.html

restraint Documentation

#Kill tcpdump and upload
cat << "EOF" > /usr/share/restraint/plugins/completed.d/80_upload_tcpdump
#!/bin/sh -x

kill $(cat $RUNPATH/tcpdump.pid)
rstrnt-report-log -l $RUNPATH/tcpdump.cap
EOF
chmod a+x /usr/share/restraint/plugins/completed.d/80_upload_tcpdump

If you need to skip file restoration, refer to RSTRNT_DISABLED as described in the environment variable section
(see Task Environment Variables).

1.10 Using Restraint

1.10.1 Running in Beaker

Beaker will use restraint by default if you are running Red Hat Enterprise Linux version 8 or later or if you are running
Fedora.

To use Restraint in Beaker for earlier versions of Red Hat Enterprise Linux or Fedora, you will need to specify
‘restraint’ as the harness:

<recipe ks_meta="harness=restraint">
<repos>
<repo name="restraint"

url="https://beaker-project.org/yum/harness/CentOS7/"/>
</repos>
.
.
.

</recipe>

If you have tasks/tests that were written for legacy RHTS (Red Hat Test System) you can install the restraint-rhts
sub-package which will bring in the legacy commands so that your tests will execute properly. Some tasks/tests have
also been written with beakerlib. Here is an example recipe node that will install both for you:

<recipe ks_meta="harness='restraint-rhts beakerlib'">
.
.
.
</recipe>

If you are using Beaker command line workflows use these command line options:

bkr <WORKFLOW> --ks-meta="harness=restraint" --repo https://beaker-project.org/yum/
→˓harness/CentOS7/

If you need RHTS compatibility and/or beakerlib you can add it here as well:

bkr <WORKFLOW> --ks-meta="harness='restraint-rhts beakerlib'" --repo https://beaker-
→˓project.org/yum/harness/CentOS7/

1.10. Using Restraint 27

restraint Documentation

1.10.2 Running Standalone

Restraint can run on its own without Beaker, this is handy when you are developing a test and would like quicker turn
around time. Before Restraint you either ran the test locally and hoped it would act the same when run inside Beaker
or dealt with the slow turn around of waiting for Beaker to schedule, provision and finally run your test. This is less
then ideal when you are actively developing a test.

You still need a job XML file which tells Restraint what tasks should be run. Here is an example where we run three
tests directly from git:

<?xml version="1.0"?>
<job>

<recipeSet>
<recipe id="1">

<task name="/kernel/performance/fs_mark">
<fetch url="git://fedorapeople.org/home/fedora/bpeck/public_git/tests.git?

→˓master#kernel/performance/fs_mark"/>
</task>
<task name="/kernel/misc/gdb-simple">

<fetch url="git://fedorapeople.org/home/fedora/bpeck/public_git/tests.git?
→˓master#kernel/misc/gdb-simple"/>

</task>
<task name="/kernel/standards/usex" role="None">
<fetch url="git://fedorapeople.org/home/fedora/bpeck/public_git/tests.git

→˓#kernel/standards/usex"/>
</task>

</recipe>
</recipeSet>

</job>

Tell Restraint client to run a job:

restraint --job /path/to/job.xml

You probably don’t want to run the restraintd server on the machine you use for day to day activity. Some tests can
be destructive or just make unfriendly changes to your system. Restraint client allows you to run tasks on a remote
system. This means you can have the task git repo on your development workstation and verify the results on your test
system. In order for this to work your git repo and the recipe XML need to be accessible to your test system. Be sure
to have the restraint-client package installed on the machine you will be running the restraint client command from

Here is an example:

restraint --host 1=addressOfMyTestSystem.example.com --job /path/to/job.xml --
→˓restraint-path /home/userid/restraint/src/restraintd -v

This will spawn the restraintd server from the path specified in --restraint-path on host addressOfMyTestSys-
tem.example.com and tell it to run the recipe with id=”1” from this machine. Also remember that the tasks which are
referenced inside of the recipe need to be accessible a well. Here is the output:

restraint --host 1=addressOfRemoteSystem --job simple_job.xml --restraint-path /home/
→˓userid/restraint/src/restraintd -v
Using ./simple_job.07 for job run

* Fetching recipe: http://192.168.1.198:8000/recipes/07/

* Parsing recipe

* Running recipe

* T: 1 [/kernel/performance/fs_mark] Running

** 1 [Default] PASS

(continues on next page)

28 Chapter 1. Features

restraint Documentation

(continued from previous page)

** 2 [Random] PASS

** 3 [MultiDir] PASS

** 4 [Random_MultiDir] PASS

* T: 1 [/kernel/performance/fs_mark] Completed: PASS

* T: 2 [/kernel/misc/gdb-simple] Running

** 5 [/kernel/misc/gdb-simple] PASS Score: 0

* T: 2 [/kernel/misc/gdb-simple] Completed: PASS

* T: 3 [/kernel/standards/usex] Running

** : 6 [/kernel/standards/usex] PASS

* T: 3 [/kernel/standards/usex] Completed: PASS

All results will be stored in the job run directory which is ‘simple_job.07’ for this run. In this directory you will
find ‘job.xml’ which has all the results and references to all the task logs. You can convert this into HTML with the
following command:

xsltproc job2html.xml simple_job.07/job.xml >simple_job.07/index.html

job2html.xml is found in Restraint’s client directory.

1.10.3 Running in Beaker and Standalone

Sometimes the tests that I am developing can be destructive to the system so I don’t want to run them on my develop-
ment box. Or the test is specific to an architecture so I can’t use a VM for it on my machine. These are cases where
it’s really handy to use a combination of Beaker for provisioning and Standalone for executing the tests. By default,
Beaker provides a test harness for all imported distributions. You can replace test harness with your build by adding
a new repository. You can create your build on your own or you can use different RPM build systems, for example
COPR. Be aware that custom restraint should have higher NVR than the latest released version and your build needs
to be built against distribution you planning to test. Otherwise, DNF may pick up Restraint provided by Beaker or
Restraint may fail to install.

First step is to run the following workflow to reserve a system in Beaker:

<job><whiteboard>restraint reservesys</whiteboard>
<recipeSet>
<recipe ks_meta="harness=restraint" id="1">
<distroRequires>
<and>

<distro_family op="=" value="Fedorarawhide"/>
<distro_variant op="=" value="Everything"/>
<distro_name op="=" value="Fedora-Rawhide-20200406.n.0"/>
<distro_arch op="=" value="ppc64le"/>

</and>
</distroRequires>
<hostRequires/>
<repos>
<repo name="my_custom_restraint" url="http://copr-be.cloud.fedoraproject.org/path/

→˓to/copr/repo/results"/>
</repos>
<task name="/distribution/check-install" role="STANDALONE" />
<task name="/distribution/reservesys" role="None">
<fetch url="https://github.com/beaker-project/beaker-core-tasks/archive/master.zip

→˓#reservesys"/>
</task>
</recipe>

(continues on next page)

1.10. Using Restraint 29

restraint Documentation

(continued from previous page)

</recipeSet>
</job>

This will reserve a ppc64 system running Fedora Rawhide. The /distribution/reservesys task will email the submitter
of the job when run so you know the system is available. By default the reservesys task will give you access to the
system for 24 hours, after that the external watchdog will reclaim the system. You can extend it using extendtesttime.sh
on the system.

You can spawn a second instance of restraintd server using the client command below. It will generate an instance
with a different port than the port used by beaker.

restraint --host 1=FQDN.example.com --job simple_job.xml --restraint-path /home/
→˓userid/restraint/src/restraintd -v

If you want to run restraint commands such as rstrnt-adjust-watchdog nn or rstrnt-abort against this
test set-up, you must first export the environment variables which includes the dynamically created communication
port. To do this, run the following:

export $(cat /etc/profile.d/rstrnt-commands-env.sh)

If the task you are developing doesn’t work as expected you can make changes and try again. Just remember to push
your changes to git, the system under test will pull from the git URL you put in your job XML.

1.11 Release Notes

1.11.1 Restraint 0.4.4

Bug Fixes

• Fix: Stabilize selinux behavior in RHEL-9
Added a static selinux policy for RHEL-9. The policy is manually built from a RHEL-9.0.0 host so it will work
on all RHEL-9 versions. If built on a later version of RHEL-9, it will not be backward compatible with older
versions and fail to install.

1.11.2 Restraint 0.4.3

Bug Fixes

• Fix: Revert fix to fetch either branch ‘main’ or ‘master’
When performing a fetch operation, restraint will continue to look for master branch only.

• Fix: Revert Fetch URL fix
Backing out fix to provide precise directory matching for repoRequires and fetch operation. The problem is not
all user selection data is precise. Some user testing will be hindered with this change. Due to these unknown
cases, requesting users chose to instead make their directory definitions more precise. Refer to comment in
Issue 272 on 3/13 for more details. If folks decide to reintroduce this change, they should also apply pull 289
which provides more flexibility.

30 Chapter 1. Features

restraint Documentation

1.11.3 Restraint 0.4.2

Bug Fixes

• Fix: Fetch either branch ‘main’ or ‘master’
When performing a fetch operation, restraint will look for either main or master branch.

• Fix: rstrnt-reboot not reliable for UEFI systems
When efibootmgr is present, the BootNext variable is set to reboot to Current. When rstrnt-prepare-reboot was
written, a timer was set to remove BootNext setting after 180 seconds. rstrnt-reboot uses the prepare script and
the timer wasn’t long enough and not needed for rstrnt-reboot. This changeset allows
NEXTBOOT_VALID_TIME to be set to 0. When 0, the timer is not set and as a result BootNext will not be
removed. rstrnt-reboot now uses a 0 timer.

• Fix: Fetch URL extract too many matched directories
When fetch url is used, restraint is copying anything that matches the pattern in https://<snip>#pattern
regardless of the location in the received path. If pattern is include, both general/include, include directories
will match when it should only be include. Restraint will now only select if it matches starting from beginning
of received path NOT throughout directory path. But first, the first string/ must be ignored from the received
path since it is superfluous for the match since it includes the repo and branch name added by curl. Jobs that
include this repo-branch prefix in the fetch pattern will now fail with this changeset. So fetching
https://<snip>#repo-branch/pattern will fail.

• Fix: Use of FALSE/FAILURESTRINGS results in ‘too many arguments’
Seeing the following errors in restraint.log files. restraintd[2330]: ./01_dmesg_check: line 53: [: too many
arguments Added Quote around the value to prevent this.

1.11.4 Restraint 0.4.1

Other

• Tag 0.4.1 was intentionally skipped.

1.11.5 Restraint 0.4.0

Bug Fixes

• Set OOMPolicy=continue to prevent killing restraintd (Fedora/RHEL9+)
Upon memory depletion, prevent the kernel from killing restraintd service. Keep restraintd running, but log the
service event. This OOMPolicy setting is only available for RHEL9+ and Fedora distros. Other distros will
remain unchanged.

• Prevent restraint client from being interrupted by SIGPIPE signal
Code change is to ignore SIGPIPE then client code will naturally attempt to retry once determined that the path
is broken.

• rstrnt-reboot to ignore SIGTERM
When this scripts performs a reboot, it does a loop forever to prevent from returning to the calling process.
This changeset ignores SIGTERMs to keep it from interrupting the loop. We must keep the SIGKILL in place
however so there is still a small window of opportunity of returning to caller but the window has been narrowed
with this change.

1.11. Release Notes 31

restraint Documentation

Other Notable Changes

• RHEL 5 and 6 builds are no longer created from this version onward.
This is partly due to upgrades of libraries used by restraint which are not compatible with the older RHEL
releases. Older restraint releases for RHEL 5 and 6 prior to this 0.4.0 release will still exist in the download
repositories.

1.11.6 Restraint 0.3.3

Bug Fixes

• Restraint client honors job_id defined in <recipe> tag.

• Improve error handling on recipe and task state management
Some errors that could indicate a bad saved state are now handled and reported.

• Fix distro version check in 20_unconfined
Make it better at detecting Fedora 34 as Fedora and distinguish RHEL from Fedora in version comparison. The
main difference is that it now picks the right SELinux context for test jobs on Fedora 34 (Rawhide at the time
of writing).

1.11.7 Restraint 0.3.2

What’s New

• Enable log manager for log caching

Bug Fixes

• Upload cached logs in time intervals
The log manager uploads the cached contents of taskout.log and harness.log every 15 seconds. This allows to
follow task progress and avoids missing logs when the external watchdog aborts the recipe.

1.11.8 Restraint 0.3.1

Bug Fixes

• Disable log manager
The log manager is disabled and the behavior for taskout.log and harness.log is the same as before it was
introduced.

1.11.9 Restraint 0.3.0

What’s New

• Wait on Beaker’s health status
When Restraint runs under Beaker, Beaker’s health status is checked before performing steps that require
communication with Beaker. Recipe execution is held until Beaker is available.

• Log manager for log caching

32 Chapter 1. Features

restraint Documentation

When Restraint runs under Beaker, harness and task logs are cached in the system. Logs are uploaded to
Beaker after the task completes.
Contributed by Ernestas Kulik <ernestask@gnome.org>

Bug Fixes

• Recognize results reported for non-rhts tasks
When the task reports just SKIP for results, the final task result should be SKIP. An extra task result is
occurring when a non-rhts task is executed. An non-rhts task is one that uses the metadata file instead of
testinfo file. Bugzilla 1334893 made a change to always report results PASS for task exiting with zero or FAIL
when exit non-zero for non-rhts tasks. As a result, PASS was being reported which has a high priority then
SKIP so the final task result was PASS.
Code changes monitor whether user reports results by way of rstrnt-report-result. If so, give those results
priority; otherwise, hardcode PASS task result for user.
When process exits with non-zero, FAIL for non-rhts will remain as this provides the user the option to
continue with the job. If they want legacy behavior, they should make a call to rstrnt-abort in their task.

• Stop logging LWD is disabled every minute
When LWD (Local Watchdog) is disabled, there is a message in the harness log that reports this every minute.
The message looks like: Localwatchdog at: Disabled! ‘. This changeset makes sure it is no longer reported
repeatedly when ‘no_localwatchdog=true is configured in the task metadata file. To ensure there is some type
of keepalive mechanism, the client now performs ssh keepalive towards the server. This timeout value is
configurable by use of the restraint client option –timeout which only affects default behavior. The timeout
value has no effect when the rsh argument is used.

• Use new task install default for non-RHTS package
For restraint-rhts package, tasks are installed and executed beneath /mnt/tests. For non-rhts restraint
installations, this path has changed to a more appropriate location.
The 20_sysinfo plugin processes journalctl log in a temporary location instead of /mnt as it is just an interim
event.

1.11.10 Restraint 0.2.3

Bug Fixes

• Fix noisy Restraint client output

The Restraint client was not honoring the verbosity levels and it was printing all output available even when the
verbosity level was the lowest. The Restraint client output now behaves similarly to release 0.1.45.

• Increase retries for recipe fetching

Retries for recipe fetching are increased from 3 attempts in 10 seconds intervals to 12 attempts in 10 seconds
intervals.

1.11.11 Restraint 0.2.2

Bug Fixes

• restraint client now honors recipe params as well as task params.

• Correct commands exit status when argument parsing fails due to bad syntax. Commands always return non-
zero in case of failure.

1.11. Release Notes 33

mailto:ernestask@gnome.org

restraint Documentation

• Resolve loop in local watchdog plugin

When the local watchdog (LWD) expires a task, the LWD plugin 20_sysinfo goes into an infinite loop since the
directory /mnt/testarea is not created for the non-rhts restraint package. An error returned by diff utility within
an infinite loop was not anticipated. The fix terminates the infinite loop when diff returns error.

1.11.12 Restraint 0.2.1

What’s New

• Add ability to select restraintd instance by port to restraint commands
When running commands outside of jobs on the local host, some restraint commands require manually setting
up environment variables or constructing long URLs before running. This can be issue if you are trying to
extend the watchdog in a timely fashion. A new option was added which requires the argument –port
<restraint-port-number>. Commands affected are rstrnt-report-log, rstrnt-report-result, rstrnt-abort, and
rstrnt-watchdog.

• Restore ability to specify restraintd port
Add the -p, –port option back to restraint daemon and client to specify the port where restraintd will be
listening to. RHBZ#1821342

• Document how to remove RHTS from Jobs
Added new section Guide to removing RHTS from Jobs detailing substitutes for RHTS scripts, environment
variables, and testinfo.desc file and associated variables. RHBZ#1802610

Bug Fixes

• Redirect task STDIN back to /dev/null
In release 0.2.0, the task STDIN was redirected to a pipe shared with the server. This breaks ausearch
command when the input is not explicitly specified, as by default, if STDIN is a pipe, it will read from it,
instead of system logs. As the pipe is closed when the task is running, tests expecting matches failed, and tests
expecting no matches were unreliable. Restoring redirect of task STDIN back to /dev/null ensures that
ausearch reads from system logs by default.

• Restore default port for restraind system service
In release 0.2.0 the port for restraintd system service is chosen dynamically, breaking workflows where the
port was expected to persist between reboots. When restraintd runs as a system service, the port defaults to
8081. RHBZ#1823545

• Restraintd killed by SIGTRAP
It was discovered that an error logging function (g_error) introduced in 0.2.0 also performed aborts. The
function was replaced with one which logs without undesirable side effects. RHBZ#1823840, RHBZ#1831824

• restraintd fails to start if both, IPv4 and IPv6, are not available on the loopback interface
In this release, restraintd will not fail if it’s able to listen on at least one protocol, IPv4 or IPv6, although it will
still try to listen on both.

• Fix use of uninitialized FD for STDIN when PTY is requested
When PTY was requested, the FD for the task STDIN was left uninitialized. The value, set to 0, was still used
in a close call, closing the parent STDIN FD and causing unexpected behavior in task execution. In this
release, the FD for STDIN is not used when PTY is requested.

34 Chapter 1. Features

https://bugzilla.redhat.com/show_bug.cgi?id=1821342
https://bugzilla.redhat.com/show_bug.cgi?id=1802610
https://bugzilla.redhat.com/show_bug.cgi?id=1823545
https://bugzilla.redhat.com/show_bug.cgi?id=1823840
https://bugzilla.redhat.com/show_bug.cgi?id=1831824

restraint Documentation

1.11.13 Restraint 0.2.0

Upgrades

• RHBZ#1667510: Remove libssh from restraint client.
The port used by restraint server is no longer static. If using the restraint client, refer to restraint documentation
for changes to arguments passed since the port is no longer included in –host argument. The client spawns
restraintd for you so the extra step of starting up a restraintd instance is no longer needed. Because of these
interface changes, the restraint client and server must be the same version.
(Contributed by Bill Peck and Carol Bouchard)

• RHBZ#1770230: Replace rhts-sync- with rstrnt-sync- cmds.
This changeset creates rstrnt-sync- commands and links rhts-sync- commands to it. The multihost plugin now
uses rstrnt-sync- commands.
(Contributed by Carol Bouchard)

• RHBZ#1802261: Upgrade libxml2 to version 2.9.10
(Contributed by Daniel Rodriguez Gonzalez)

Bug Fixes

• RHBZ#1795915: Remove execute permission from systemd service file. There is a warning message in the
systemd logs about the file being executable.
(Contributed by John Villalovos)

1.11.14 Restraint 0.1.45

• FIXED: RHBZ#1795781: Multihost sync hangs on remote reboot. Users multihost synchronization task hangs
on block operation when remote host reboots. This is a corner case difficult to reproduce.
(Contributed by Carol Bouchard)

• FIXED: RHBZ#1792466: Restraint segfault during labcontroller timeout. On error when gathering peer roles
from the lab controller, a double free of the error structure causes bad behavior in glib memory management.
Eventually this causes restraint server to crash on a segfault.
(Contributed by Carol Bouchard)

• FIXED: RHBZ#1691485: Rstrnt Client not provide task vers in job.xml. This change affects rpm tasks only.
Restraint server gets the version number from the rpm and returns it in ‘Completed/Aborted’ status message
sent to restraint client. The restraint client writes it out in the job.xml.
(Contributed by Carol Bouchard)

• FIXED: RHBZ#1793114: Wrong file permission on 30_dmesg_clear plugin. The new 30_dmesg_clear plugin
does not have execute file permission. However, other scripts add execution permission so it is correct in the
rpm. This is being fixed in repo to prevent chasing it as an issue.
(Contributed by Carol Bouchard)

1.11.15 Restraint 0.1.44

• FIXED: RHBZ#1788252: restraintd crash in timeout_callback functions. Ran into timing issues when
process_timeout_callback occurs after process_pid_callback. The task data is NULL so
process_timeout_callback should not attempt to process task data when pid is 0 indicating process is complete.
(Contributed by Carol Bouchard)

1.11. Release Notes 35

https://bugzilla.redhat.com/show_bug.cgi?id=1667510
https://bugzilla.redhat.com/show_bug.cgi?id=1770230
https://bugzilla.redhat.com/show_bug.cgi?id=1802261
https://bugzilla.redhat.com/show_bug.cgi?id=1795915
https://bugzilla.redhat.com/show_bug.cgi?id=1795781
https://bugzilla.redhat.com/show_bug.cgi?id=1792466
https://bugzilla.redhat.com/show_bug.cgi?id=1691485
https://bugzilla.redhat.com/show_bug.cgi?id=1793114
https://bugzilla.redhat.com/show_bug.cgi?id=1788252

restraint Documentation

• FIXED: RHBZ#1781722: Not executing task when multihost utilized. Observed that restraint reported the task
started but output from the task itself not making it to taskout.log file. With debug enabled, found it stopped in
30_restore_events plugin. Performed more detail unit testing on rstrnt-sync and resolved a number of issues
found.
(Contributed by Carol Bouchard)

• FIXED: RHBZ#1782422: Fetch https operation noisy harness.log. When using <fetch
url=”https://github.com/repo#dirname> in task, the entire repo is downloaded and a log entry for each file/dir
found is logged. These log entries get reported to Lab Controller which results in reduced performance. Fixed
code to report only entries found beneath the directory name ‘dirname’.
(Contributed by Carol Bouchard)

1.11.16 Restraint 0.1.43

• FIXED: RHBZ#1774211: Seeing too many repo extraction. Under certain conditions, restraint was failing to
go to next repoRequires operation causing redundant fetch operations to occur.
(Contributed by Carol Bouchard)

• FIXED: RHBZ#1236568: Separate dmesg clear from check. Need for a separate plugin so clear of the dmesg
logs is done independently from check dmesg logs. Currently this is done during dmesg check plugin. If dmesg
check plugin is disabled, so is the clear operation leaving the next task will process unrelated errors. By
separating clear from check operation, the clear operation can always be performed.
(Contributed by Carol Bouchard)

• FIXED: RHBZ#1749316: Rstrnt retry refresh role on socket io err. User periodically observed “Error: Socket
I/O Timed out”. This occurred during the restraint task state “** Refreshing peer role hostnames” which
collects host roles from lab controller and there is no response in default 1 minute time frame. To handle
network issues, restraint will retry this event similar to what is done when performing fetch operations.
(Contributed by Carol Bouchard)

• FIXED: RHBZ#1762731: Rstrnt add more metadata UTs.
(Contributed by Carol Bouchard)

• NEW: RHBZ#1455763: New command rstrnt-prepare-reboot. It does the same preparatory work as
rstrnt-reboot, but does not trigger the reboot. Tasks can use this prior to (intentionally) crashing the system or
rebooting it in some other non-standard way.
(Contributed by Tomas Klohna)

1.11.17 Restraint 0.1.42

• FIXED: RHBZ#1753652: Multihost Sync Improvements. A number of improvements have been made to the
Multihost synchronization feature. * Only perform multihost sync when roles SERVERS and CLIENTS are
defined in the environment. * Add the ability to tune the amount of time to pause before another retry attempt.
* Restraint’s retry pause time reduced to 30 from 60. * Improve log entries to provide insight to multihost sync
operations.
(Contributed by Carol Bouchard)

• FIXED: RHBZ#1756515: FALSESTRINGS not provide consistent results. If a dmesg log contains “falsestring
failurestring”, then falsestring will override failurestring. If they were swapped where “failurestring
falsestring”, then falsestring does not override failurestring which is a bug. This changeset resolves this
inconsistency. It also removed printing of surrounding 5 lines around the matching line. This will make it
easier for users to identify which line has matched. The full dmesg log file is also provided so user can easily
search through the full dmesg log if they need to see surrounding lines.
(Contributed by Carol Bouchard)

36 Chapter 1. Features

https://bugzilla.redhat.com/show_bug.cgi?id=1781722
https://bugzilla.redhat.com/show_bug.cgi?id=1782422
https://github.com/repo#dirname
https://bugzilla.redhat.com/show_bug.cgi?id=1774211
https://bugzilla.redhat.com/show_bug.cgi?id=1236568
https://bugzilla.redhat.com/show_bug.cgi?id=1749316
https://bugzilla.redhat.com/show_bug.cgi?id=1762731
https://bugzilla.redhat.com/show_bug.cgi?id=1455763
https://bugzilla.redhat.com/show_bug.cgi?id=1753652
https://bugzilla.redhat.com/show_bug.cgi?id=1756515

restraint Documentation

1.11.18 Restraint 0.1.41

• FIXED: RHBZ#1753336: The cli rstrnt-adjust-watchdog command. was producing random results. The
message from restraintd to the lab controller was getting truncated when the number of digits for time
increased. There is an extra 30 minutes added to this message for external watchdog so it is possible for it to
increase by 1 byte. Since restraintd used the same message received for the request, the message length was
already set so the soup library didn’t try to recalculate it. The solution is to initialize the length to 0 to force the
soup library to recalculate it.
(Contributed by Carol Bouchard)

• FIXED: RHBZ#1751074: Rlse 0.1.40 seeing a lot of invalid. dmesg failures. This behavior only occurs on
x86_64 arch. The rpm task /distribution/install, method VirtWorkaround() is setting an empty
/usr/share/rhts/failurestrings file. As a result, every line is treated as a failure. Solution is to make sure the
failurestrings file has content before using it. Included in this changeset is detail output for next triage. This
output is written to the bottom of resultoutputfile.log when 01_dmesg_check reports failure. This debug code
reports which set of failure and falsestring data was used: environment vars, files, or hardcoded defaults. It
shows content of the failure/falsestrings variables and if the files exist, if there is data in them or the files
content is also dumped into the bottom of the log file.
(Contributed by Carol Bouchard)

1.11.19 Restraint 0.1.40

Released 4 September 2019.

• FIXED: RHBZ#1609330: Restraint should have a log similar to beah’s /mnt/testarea/current.log. This file
points to unique task file named /tmp/tmp.XXXX (where XXXX is random). As tasks change, the link changes
to new tmp.XXXX file. File current.log makes it convenient to find current task log file as the job is running.
(Contributed by Carol Bouchard)

• NEW: RHBZ#1713313: Provide an option for not rebooting the test box after localwatchdog killed a task. No
new code was written for this since an option already existed. This changeset documents the option
RSTRNT_DISABLED which allows the user to disable specified plugins.
(Contributed by Carol Bouchard)

• FIXED: RHBZ#1678549: Restraint starts too early for the system to get ready for testing. Instead, wait until
network is up before starting restraint.
(Contributed by Martin Styk)

• FIXED: RHBZ#1694221: SELinux tests break. The 20_unconfined plugin currently checks if process running
with SELinux role and domain but was missing check if user is SELinux user.
(Contributed by Martin Styk)

• FIXED: RHBZ#1478653: [RESTRAINT] Error uploading /var/log/messages. Seeing error Bad Request
[soup_http_error_quark, 400]. This error occurs because restraint reports the number of bytes to send but then
sends more as the file continues to grow. Now we only send the number of bytes from the point the
transmission began and ignore subsequent lines in the log as they are just extra noise.
(Contributed by Carol Bouchard)

• FIXED: RHBZ#1700886: Restraint not uploading resultoutputfile.log when local watchdog expires. The
variable OUTPUTFILE was not being set. It is now set to the tasks current.log (ref: 1609330) so it is now
reported.
(Contributed by Carol Bouchard)

• FIXED: RHBZ#1730617: Multihost: Task execution synchronization does not work in restraint. As
documented in Beaker’s Multihost Tasks section, Task 1 on both server and client must complete before

1.11. Release Notes 37

https://bugzilla.redhat.com/show_bug.cgi?id=1753336
https://bugzilla.redhat.com/show_bug.cgi?id=1751074
https://bugzilla.redhat.com/show_bug.cgi?id=1609330
https://bugzilla.redhat.com/show_bug.cgi?id=1713313
https://bugzilla.redhat.com/show_bug.cgi?id=1678549
https://bugzilla.redhat.com/show_bug.cgi?id=1694221
https://bugzilla.redhat.com/show_bug.cgi?id=1478653
https://bugzilla.redhat.com/show_bug.cgi?id=1700886
https://bugzilla.redhat.com/show_bug.cgi?id=1730617

restraint Documentation

moving on to Task 2 and so on. A new plugin 85_sync_multihost_tasks was added to cause synchronization
between client and server tasks.
(Contributed by Carol Bouchard)

• FIXED: RHBZ#1700915: Resolve inconsistency of MAXTIME vs MAX_TIME variables. To resolve
confusion, RSTRNT_MAX_TIME is being deprecated with an existing variable KILLTIMEOVERRIDE. This
changeset documents this deprecation.
(Contributed by Tomas Klohna)

• NEW: RHBZ#1700926: Allow task to adjust local watchdog. The command rstrnt-adjust-watchdog only
affects the external watchdog. To be compatible with beah, this commmand also works for the local watchdog.
(Contributed by Carol Bouchard)

• FIXED: RHBZ#1705223: Incomplete doc in regards to metadata/testinfo.desc. This is a spinoff from
BZ1120496 but for restraint. This changeset identified and documented variables in metadata and testinfo file.
(Contributed by Carol Bouchard)

1.11.20 Restraint 0.1.39

Released 27 February 2019.

• NEW: RHBZ#1552199: Restraint-client now supports changing timeout value for the request.
(Contributed by Martin Styk)

• FIXED: RHBZ#1670377: Fixed compilation issues for GCC9/Automake.
(Contributed by Martin Styk)

1.11.21 Restraint 0.1.38

Released 29 January 2019.

• FIXED: RHBZ#1670111: Fixed crash of Restraint for ppc64le and aarch64 architecture.
(Contributed by Bill Peck)

1.11.22 Restraint 0.1.37

Released 11 January 2019.

• NEW: RHBZ#1665390: Added feature to set family from client XML.
(Contributed by Bill Peck)

• NEW: RHBZ#1656466: Restraint now supports @module syntax for dependencies for RHEL8+.
(Contributed by Martin Styk)

• FIXED: RHBZ#1663125: Restraint now listens separately for IPv4 and IPv6. One running version of the
protocol is sufficient for restraintd run.
(Contributed by Bill Peck)

• FIXED: RHBZ#1663825: When BootCurrent is not available, Restraint will try to fall back to
/root/EFI_BOOT_ENTRY.TXT.
(Contributed by Martin Styk)

• FIXED: RHBZ#1659353: Fixed obsolete URL for Bzip2 package in Makefile.
(Contributed by Martin Styk)

• FIXED: RHBZ#1599550: Fixed crash of Restraint for RHEL6 arch s390 caused by glib2.

38 Chapter 1. Features

https://bugzilla.redhat.com/show_bug.cgi?id=1700915
https://bugzilla.redhat.com/show_bug.cgi?id=1700926
https://bugzilla.redhat.com/show_bug.cgi?id=1705223
https://bugzilla.redhat.com/show_bug.cgi?id=1552199
https://bugzilla.redhat.com/show_bug.cgi?id=1670377
https://bugzilla.redhat.com/show_bug.cgi?id=1670111
https://bugzilla.redhat.com/show_bug.cgi?id=1665390
https://bugzilla.redhat.com/show_bug.cgi?id=1656466
https://bugzilla.redhat.com/show_bug.cgi?id=1663125
https://bugzilla.redhat.com/show_bug.cgi?id=1663825
https://bugzilla.redhat.com/show_bug.cgi?id=1659353
https://bugzilla.redhat.com/show_bug.cgi?id=1599550

restraint Documentation

(Contributed by Matt Tyson)

• FIXED: RHBZ#1608262: Fixed guest-host synchronization.
(Contributed by Dan Callaghan)

1.11.23 Restraint 0.1.36

Released 24 August 2018.

• NEW: RHBZ#1506064: The dmesg error checking plugin can now match patterns against multi-line “cut here”
style traces. The plugin now ignores a warning about “mapping multiple BARs” on IBM x3250m4 systems,
matching the existing behaviour of the RHTS dmesg checker.
(Contributed by Jacob McKenzie)

• FIXED: RHBZ#1592376: Restraint resets the SIGPIPE handler before executing task processes. Previously
the tasks would inherit the “ignore” action for SIGPIPE from the Restraint parent process, which would
prevent normal shell broken pipe handling from working correctly in the task.
(Contributed by Matt Tyson)

• FIXED: RHBZ#1595167: When the local watchdog timer expires, Restraint will now upload the output from
journalctl in favour of /var/log/messages if the systemd journal is present. Previously it would
attempt to upload /var/log/messages even if the file did not exist, causing the local watchdog handling
to enter an infinite loop.
(Contributed by Matt Tyson)

• FIXED: RHBZ#1593595: Fixed an improper buffer allocation which could cause Restraint to crash with a
segmentation fault instead of reporting an error message in certain circumstances.
(Contributed by Róman Joost)

• FIXED: RHBZ#1600825: Fixed a file conflict introduced in Restraint 0.1.35 between the restraint
package and the rhts-test-env package.
(Contributed by Matt Tyson)

• FIXED: RHBZ#1601705: Fixed a shell syntax error in the RPM %post scriptlet on RHEL4 which caused the
package to be un-installable.
(Contributed by Dan Callaghan)

• FIXED: RHBZ#1585904: Fixed a shell syntax error in the restraintd init script which caused it to fail to start
on RHEL4.
(Contributed by Dan Callaghan)

1.12 Developer Guide

If you have questions related to Restraint’s development that are not currently answered in this guide, the two main
ways to contact the Restraint development team are the same as those for getting general assistance with using and
installing Beaker:

• the development mailing list

• the #beaker IRC channel on FreeNode

This document focuses on the mechanics of working with Restraint’s code base with the target audience being a
Restraint user interested in learning more about Restraint’s working or a potential Restraint contributor.

1.12. Developer Guide 39

https://bugzilla.redhat.com/show_bug.cgi?id=1608262
https://bugzilla.redhat.com/show_bug.cgi?id=1506064
https://bugzilla.redhat.com/show_bug.cgi?id=1592376
https://bugzilla.redhat.com/show_bug.cgi?id=1595167
https://bugzilla.redhat.com/show_bug.cgi?id=1593595
https://bugzilla.redhat.com/show_bug.cgi?id=1600825
https://bugzilla.redhat.com/show_bug.cgi?id=1601705
https://bugzilla.redhat.com/show_bug.cgi?id=1585904
https://lists.fedorahosted.org/mailman/listinfo/beaker-devel

restraint Documentation

1.12.1 Getting Started

Restraint is written in C. The source lives in a git repo on http://github.com/beaker-project/ along with other related
projects. The following creates a local clone of the Restraint source.

git clone git@github.com:beaker-project/restraint.git

Restraint uses a number of external libraries/tools, so before you can build Restraint you need to install the external
libraries using dnf builddep restraint.spec. Once you have installed these dependencies, running a make
all at the source directory root will compile and build restraint, restraintd, and commands. To also run a quick sanity
check, it is a good idea to run the unit tests using make check. The unit tests use a simple Python HTTP server and
git-daemon, so you will need to install this as well (dnf install git-daemon).

1.12.2 Testing Changes

If you have fixed an existing bug or implemented a new feature, it is a good idea to add a relevant test. The existing
tests can be found in the src/ directory in the source files with names starting with test_.

It may also be a good idea to run a recipe by building the Restraint daemon and client from the modified code base.
You can build the binaries using make all in the src directory.

From the same directory, run the restraint client with a reference to a job.xml. The following shows how to initiate the
restraint client to execute a recipe:

restraint --host 1=127.0.0.1 --job /path/to/job.xml --restraint-path /my_development_
→˓path/restraint/src/restraintd

Developers should use the option --restraint-path to point to the development path of the restraintd server.
More details on this can be found in Running Standalone.

1.12.3 Submitting a Patch

All patches are submitted using GitHub Pull Requests feature. To do that you have to have the fork of the Restraint.

Created patch should also have a note for release notes. The note has to be created by Reno.

1.13 Guide to removing RHTS from Jobs

For some products, Test Requirements include running restraint by itself. This requires the exclusion of the legacy
RHTS package or restraint-rhts package installation. Below lists areas to draw attention in order to eliminate RHTS
references.

1. Install the restraint harness package and not restraint-rhts in your jobs.

2. Avoid defining tasks or dependencies which cause installation of the RHTS library.

3. Replace RHTS scripts with Restraint scripts. Replacement for RHTS Scripts provides a table which maps legacy
to restraint scripts.

4. Change your tasks to utilize Restraint’s metadata file instead of RHTS testinfo.desc file. Replacement for RHTS
testinfo.desc File provides details on mapping legacy testinfo.desc variables to restraint metadata variables.
Depending on how your task is written, you may have to update or remove Makefiles so they do not process the
testinfo.desc file. An example of this is also included in the referenced section.

40 Chapter 1. Features

http://github.com/beaker-project/
https://docs.openstack.org/reno/latest/user/usage.html

restraint Documentation

5. The final results for a task is influenced by whether your task is defined with a metadata file (non-rhts) versus
Makefile/testinfo.desc (rhts). If a task exits with a zero and the user did not call rstrnt-report-result, the task will
conclude with PASS instead of New making sure there is some valid conclusion to this task. If task exits with
non-zero, the task will result with FAIL for non-rhts instead of ABORT. For further details, refer to Task Results.

6. Replace RHTS environment variables with Restraint variables. A table listing RHTS Legacy Variables to Re-
straint Substitute can be found in Legacy RHTS Task Environment Variables.

1.13.1 Replacement for RHTS Scripts

The table below lists known legacy RHTS commands. Some are provided in the restraint-rhts package and some are
from rhts package. It is encouraged for people to use Restraint’s substitute for these commands as they are actively
supported. Included in the table are the Restraint substitutes and which RHTS commands are deprecated.

RHTS Legacy Script Restraint Substitute
rhts-abort rstrnt-abort
rhts-backup rstrnt-backup
rhts-db-submit-result rhts_db_submit_result rstrnt-report-result.d plugin Report Result (See Note)
rhts-environment.sh rhts_environment.sh None
rhts-extend rstrnt-adjust-watchdog
rhts-flush None
rhts-lint None
rhts-power None
rhts-reboot rstrnt-reboot
rhts-recipe-sync-block rhts_recipe_sync_block rstrnt-sync-block
rhts-recipe-sync-set rhts_recipe_sync_set rstrnt-sync-set
rhts-report-result rstrnt-report-result
rhts-restore rstrnt-restore
rhts-run-simple-test None
rhts-submit-log rhts_submit_log rstrnt-report-log
rhts-sync-block rhts_sync_block rstrnt-sync-block
rhts-sync-set rhts_sync_set rstrnt-sync-set
rhts-system-info localwatchdog.d 20_sysinfo plugin Local Watchdog (See Note)

Note: Some functionality in RHTS scripts are replaced by Restraint plugins. Links for details on those plugins are
contained in the Restraint Substitute column.

1.13.2 Replacement for RHTS testinfo.desc File

Legacy RHTS tests use the testinfo.desc file for their metadata1. Restraint supports generating (via the Makefile)
and reading this file; however, Restraint does not process all the fields in this file. Restraint gives the metadata file
predecence over the testinfo.desc file.

The tables below shows is a list of testinfo.desc variables Restraint parses and acts on. The table also shows the
mapping to Restraint metadata section/variable.

1 RHTS Task Metadata.

1.13. Guide to removing RHTS from Jobs 41

https://beaker-project.org/docs/user-guide/task-metadata.html

restraint Documentation

testinfo.desc variable metadata [section] variable substitute
Name [General] name
Environment [restraint] environment
TestTime [restraint] max_time
Requires [restraint] dependencies
RhtsRequires [restraint] dependencies
USE_PTY [restraint] use_pty

The following are informational variables and should be maintained. Restraint does not perform any action on these
variables.

testinfo.desc variable metadata [section] variable substitute
License [General] license
Owner [General] owner
Description [General] description
Confidential [General] confidential
Destructive [General] destructive

There are no substitutes for the following Makefile/testinfo.desc variables in Restraint’s metadata file. Some of these
variables are informational and can be added in the metadata file but it is just documentation. Restraint will not act on
them and they will be ignored.

• TESTVERSION

• FILES

• BUILT_FILES

• TEST_DIR

• Path

• Architectures

• Bugs

• Priority

• Releases

• RhtsOptions

• TestVersion

Example of removing testinfo.desc file

The sample files below show converting Makefile/testinfo.desc to metadata file. The Makefile does not have to be
removed in its entirety. In the Sample Makefile, everything from rhts-make.include below should be removed. If the
upper part of the Makefile is kept, the entry_point variable defined in the metadata file is not required since Restraint
will perform make run when entry_point is not present.

Sample Makefile:

export TEST=/examples/no-rhts/sample-before
export TESTVERSION=1.0

BUILT_FILES=

(continues on next page)

42 Chapter 1. Features

restraint Documentation

(continued from previous page)

FILES=$(METADATA) runtest.sh Makefile PURPOSE

.PHONY: all install download clean

run: $(FILES) build
./runtest.sh

build: $(BUILT_FILES)
test -x runtest.sh || chmod a+x runtest.sh

clean:
rm -f *~ $(BUILT_FILES)

include /usr/share/rhts/lib/rhts-make.include

$(METADATA): Makefile
@echo "Owner: User ABC1 <userabc1@example.com>" > $(METADATA)
@echo "Name: $(TEST)" >> $(METADATA)
@echo "TestVersion: $(TESTVERSION)" >> $(METADATA)
@echo "Path: $(TEST_DIR)" >> $(METADATA)
@echo "Description: Sample-before-no-rhts" >> $(METADATA)
@echo "Type: Sanity" >> $(METADATA)
@echo "TestTime: 5m" >> $(METADATA)
@echo "Priority: Normal" >> $(METADATA)
@echo "License: GPLv2+" >> $(METADATA)
@echo "Confidential: no" >> $(METADATA)
@echo "Destructive: no" >> $(METADATA)
@echo "Releases: -RHEL7 -RHEL8" >> $(METADATA)
@echo "Architectures: x86_64" >> $(METADATA)

Makefile generated testinfo.desc file:

Owner: User ABC1 <userabc1@example.com>
Name: /examples/no-rhts/sample-before
TestVersion: 1.0
Path: /mnt/tests/examples/no-rhts/sample-before
Description: Sample-before-no-rhts
Type: Sanity
TestTime: 5m
Priority: Normal
License: GPLv2+
Confidential: no
Destructive: no
Releases: -RHEL7 -RHEL8
Architectures: x86_64

Replacement restraint metadata file with no Makefile:

[General]
description=Sample-after-no-rhts
owner=User ABC1 <userabc1@example.com>
license=GPLv2+
confidential=no
destructive=no

[restraint]
(continues on next page)

1.13. Guide to removing RHTS from Jobs 43

restraint Documentation

(continued from previous page)

entry_point=./runtest.sh
max_time=5m
name=/examples/no-rhts/sample-after

1.13.3 Legacy RHTS Task Environment Variables

When the testinfo.desc file is present, Restraint exports the RHTS Legacy variables to support legacy tests written for
RHTS (Red Hat Test System). Both the testinfo.desc file and these variables are being deprecated and the table below
lists the variable substitutes.

RHTS Legacy Variable Restraint Substitute
ARCH RSTRNT_OSARCH
DISTRO RSTRNT_OSDISTRO
FAMILY RSTRNT_OSMAJOR
JOBID RSTRNT_JOBID
REBOOTCOUNT RSTRNT_REBOOTCOUNT
RECIPESETID RSTRNT_RECIPESETID
RECIPEID RSTRNT_RECIPEID
RECIPETESTID RSTRNT_RECIPEID
RESULT_SERVER No equivalent. Communication only with client/lab controller.
SUBMITTER RSTRNT_OWNER
TASKID RSTRNT_TASKID
TESTID RSTRNT_TASKID
TESTNAME RSTRNT_TASKNAME
TESTPATH RSTRNT_TASKPATH
VARIANT RSTRNT_OSVARIANT

44 Chapter 1. Features

CHAPTER 2

Additional Information

45

restraint Documentation

46 Chapter 2. Additional Information

CHAPTER 3

Indices and Tables

• genindex

• modindex

• search

47

restraint Documentation

48 Chapter 3. Indices and Tables

Index

Symbols
-any

command line option, 13
-host <recipe_id>=[<user>@]<host>

command line option, 14
-job </yourdir/your-job.xml>

command line option, 14
-no-plugins

command line option, 12
-restraint-path </dir/restraintd>

command line option, 14
-retry <time>

command line option, 13
-timeout <timeout>

command line option, 13
-e, -rsh <command>

command line option, 14
-l, -filename <logfilename>

command line option, 11
-o, -outputfile <outfilename>

command line option, 11
-p, -disable-plugin <plugin-name(s)>

command line option, 12
-s <state>

command line option, 13
-v

command line option, 14

C
command line option

-any, 13
-host <recipe_id>=[<user>@]<host>,

14
-job </yourdir/your-job.xml>, 14
-no-plugins, 12
-restraint-path </dir/restraintd>,

14
-retry <time>, 13
-timeout <timeout>, 13

-e, -rsh <command>, 14
-l, -filename <logfilename>, 11
-o, -outputfile <outfilename>, 11
-p, -disable-plugin

<plugin-name(s)>, 12
-s <state>, 13
-v, 14
LOGFILE, 12
METRIC, 12
TESTNAME, 12
TESTRESULT, 12
time, 8

E
environment variable

NEXTBOOT_VALID_TIME, 10

L
LOGFILE

command line option, 12

M
METRIC

command line option, 12

N
NEXTBOOT_VALID_TIME, 10

T
TESTNAME

command line option, 12
TESTRESULT

command line option, 12
time

command line option, 8

49

	Features
	Installing
	Starting the Daemon
	Processes and Commands
	Jobs
	Tasks
	Task Environment Variables
	Script/Plugin Environment Variables
	Task Results
	Plugins
	Using Restraint
	Release Notes
	Developer Guide
	Guide to removing RHTS from Jobs

	Additional Information
	Indices and Tables
	Index

